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Facts, Notions, Concepts (and cups of coffee....)

Temperature differences between macroscopic objects in energy exchanging
contact are expected to vanish, irrespective of their initial values.

Eigenstate Thermalization Hypothesis (ETH): “cloud width” Σ(D̂, Ĥ) small

Σ2 ≡

d∑

n=1

pn〈n|D̂ |n〉2 − D̄
2

D̄ ≡

d∑

n=1

pn〈n|D̂ |n〉 Ĥ|n〉 = En

pn probability distribution, sharply peaked at some En = Ē

Initial state independence (ISI): Expectation values of some observable D̂

relax towards a common value irrespective of their initial values.

non-resonance condition (NRC): any difference between two eigenvalues of
Ĥ occurs only once.

Given the NRC holds and the ETH applies ⇒ ISI follows for all possible
initial states with sufficiently broad energy distributions

If the ETH does not apply there may or may not be ISI, depending on the
initial state.

Is the ETH (in the above sense) physically imperative for ISI of energy
differences?
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Maybe the ETH always applies to “Temperature” Relaxation?

model:
weakly coupled, anisotropic

Heisenberg chains, NR = 2NL
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observable: energy difference:
D̂ = ĤL − ĤR

scaling of Σ ∝ d
−γ
eff for NL = 4, 6, 8(9)
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What about clean Heisenberg chain?
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× 0.1

this indicates Σ = const
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Do energy differences in the clean Heisenberg chain not relax ISI?

What initial state? ⇒ microcanonical observable
displaced state (MOD) (no “quench”)

ρ̂(0) = ρMOD(χ, σ, d
′) :∝ e

−(Ĥ2+χ2[D̂−d′2])/2σ2

.

choosing χ, σ, d ′ carefully we are able to prepare
states with ∆E ≈ 0.3 and d(0) = ±NL with
d(t) := 〈D̂(t)〉 (overall energy scale ca. 3NL)

“stick effect”: it looks like d(t) → r(NL)d(0) where
r(NL) is a constant which is independent of d(0)
Does the stick effect vanish with increasing size?

Besides, Σ is not a dimensionless quantity, so what
is “small”?
Define, just for fun: v2 = Σ2/δ2 with

δ2 = 〈D̂2〉0 − 〈D̂〉20

with 〈· · · 〉0 =Tr{· · · ρ̂MOD(χ = 0, σ, d ′)}
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(a) |d(0)|=4

(b) |d(0)|=6

(c) |d(0)|=8

...seems they do !

....and v rather than Σ detects that.
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What about strong couplings?

Same model (a), strong interchain couplings Jc = (3...5)J

Σ may increase
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The End

Thank you for your attention!

The talk itself as well as related papers from our group may be found on our
webpage.
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