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Motivation and Perspective

The main scope of our work is to:

• clarify or explain the origin of thermodynamical behavior entirely on the basis of
Hamilton models and Schrödinger-type quantum dynamics.

• define the thermodynamical limit more precisely, especially with regard to small
systems or small subunits of systems.

• improve the understanding of transport phenomena, especially in the regime of
transport through small quantum systems.

• pave the road towards quantum thermodynamical machines?



Fundamental Law or Emergent Description?
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Some Features of Thermodynamical Behavior

2. Law: dS
dt

≥ 0

• All systems evolve towards equilibri-
um.

• Equilibrium is characterized by maxi-
mum entropy

• If energy is exchanged with the envi-
ronment, equilibrium is characterized
by a Boltzmann distribution.

1. law: dU = TdS − pdV

• Description requires very few varia-
bles.

• Intensive variables are partial deriva-
tives of energy with respect to the
corresponding extensive variables.

• Systems in exchanging contact fea-
ture the same intensive variables

How can this be explained on the basis of Newtons or Schrödingers equations,
that do not feature any fixpoint?

Even more severly they are invariant with respect to time reversal!



Entropy Dynamics in Phase Space: The Second Law

Boltzmann:

Problems:

• Ergodicity

• Cell Size

• Averaging Time

Gibbs:

Problems:

• Liouvilles Law

• Mixing

• Cell Size

Ehrenfest:

Problems:

• Definition of Macro-
scopic Cells

• Phase Space Velocity
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Heisenberg cut? ⇒ Typical Gas:

Particle masses: ≈ 1 − 100 Proton masses Particle sizes: ≈ 10−10m

Width of a wavepackage at t = 0 : 10−10m

Width of a wavepackage at t = 1sek. : 1m − 100m

Classical description of thermodynamical systems in general a priori arguable.



A Quantum Approach to Thermodynamics

Von Neumann Entropy: S = −kTr{ρ̂ ln ρ̂}

Purity: P =
√

Tr{(ρ̂)2}

Entropy and Purity do not map exactly but: Smax
≈

⇔ Pmin

entirely isolated system: ih̄
d

dt
ρ̂ =

[

Ĥ, ρ̂g
]

⇒
dP

dt
= 0 ⇒

dS

dt
= 0

How can entropy possibly change?



Composite Systems

System consisting of considered system (S) and environment (E):

ih̄
d

dt
|Ψ〉 =

(

ĤS + ĤE + Î
)

|Ψ〉 ρ̂S := TrE{|Ψ〉〈Ψ|}

in general: Î 6= 0 ⇒
dS

dt
6= 0

thermally insulated means:
[

ĤS, Î
]

= 0 but not: Î = 0

Entropy may be changed also by interactions that do not exchange energy!



Hilbert space “Landscapes”

Why does entropy increase?

Entropy is defined pointwise on Hilbert space: S = S(|Ψ〉) ⇒ “Entropy landscape”.

~ Maximum Entropy

~ Minimum Entropy

Conjecture: For “large” environments allmost all accessible composite system
microstates |Ψ〉 feature allmost maximum local entropy!



Hilbert space Averages

Representation of state spaces:

Classical Mechanics: State definition: Γ = {xn, pn}

Phase space, Cartesian coordinates {xn, pn}

Quantum Mechanics: State definition |ψ〉 =
∑

n(φn + iφ′n)|n〉

Hilbert space, Cartesian coordinates {φn, φ
′

n}

Energy conservation imposes a condition on the {φi}, set by the initial state |Ψ(0)〉
⇒ Accessible Region (AR)

Hilbert space average: << f >>=

∫

AR
f(|Ψ{φi}〉)

∏

i

dφi



Microcanonical and Canonical Conditions

Microcanonical Conditions:
Hilbert space average of the purity over the AR under microcanonical conditions:

<< P g >>≈ P
g
min(|Ψ(0)〉) +

ε(|Ψ(0)〉)

NE
rel

NE
rel >> 1 ⇒ << SS >>≈ SS

max

NE
rel: Degeneracy of the relevant energy levels of the environment

Canonical conditions
Energy exchange ⇒ Occupation number landscape
Hilbert space averages of the occupation numbers over the AR under canonical
conditions:

<< WS(E) >>∝ NS(E)NE(U −E)

If the system was ergodic, time averaging would yield the same formula!



The Smallest Thermodynamical System

PSfrag replacements

∆E

∆E

∆E

⊗

Î

system environment
50

100

200

Îcan =
∑

i

ciσ̂
+â−i + c∗i σ̂

−â+

i Îmic =
∑

i

(c0i σ̂
+σ̂− + c1i σ̂

−σ̂+)(b̂−i + b̂+i )

â: Interband Transition b̂: Innerband Transition ci: Randomly distributed small
complex numbers

Solve the Schrödinger equation ⇒ Thermodynamics!



Boltzmann Distribution

PSfrag replacements

∆E∆E

⊗

Î
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Systems may evolve into a Boltzmann distribution without the environment
being in a thermal state.



Fluctuations
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Heisenberg Spin Chain in Strong Magnetic Field
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Equilibrium may be enforced onto subunits by the considered system itself.



The Route to Equilibrium

How can statistical, exponential relaxation processes be explained?

Fermis Golden Rule: Der unbestreitbare Erfolg der Goldnen Regel muss bei genau-

erem Hinsehen allerdings mehr als verblüffen, da wir zu ihrer Ableitung mehrere

sich zum Teil eklatant widersprechende Voraussetzung benützt haben. (Nolting 5/2)

Weisskopf Wigner Theory: Explains the decay of an exitation in an atom coupled
to the electromagnetic field at T = 0. Hard to generalize!

Quantum Master Equations:

• Systems must be Markovian

• Inital state must factorize

• Bath state must be thermal

• Often systems are assumed to remain
uncorrelated

• Backactions onto the bath are igno-
red



Hilbert space Average Method (HAM)

For a short time-step τ , second order time-dependent perturbation theory yields:

|Ψ(t+ τ)〉 ≈ Û(t, τ)|Ψ(t)〉

Short time evolutions of matrix elements of the density matrix of the considered
system read

〈Ψ(t+ τ)|i〉〈j|Ψ(t+ τ)〉 = 〈Ψ(t)|Û+(t, τ)|i〉〈j|Û(t, τ)|Ψ(t)〉 := ρij(|Ψ〉, t, τ)

Markovian Systems: Computing the Hilbert space average of ρij over an appropriate
region yields

<< ρij(|Ψ〉, t, τ) >>≈ ρij(t) − τ
∑

lm

γijlmρlm(t)

Replace actual value by Hilbert space average and iterate ⇒

˙ρij = −
∑

lm

γijlmρlm(t)



From Schrödingerian to Statistical Dynamics
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Pure state Schrödinger dynamics may give rise to an exponential decay.



Summary and Conclusion

• Quantum systems, that are weakly coupled to larger systems, show, under pure
Schrödingerian dynamics, a strong tendency towards thermodynamical equilibrium,
even if no energy is exchanged.

• The occurence of thermodynamical behavior depends on various conditions, but
there is no minimum size or particle number.

• Energy exchange between moderate sized quantum systems may appear merely
statistical. This might lead to an improved understanding of thermal transport.
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